A Bayesian Image Retrieval Framework
نویسندگان
چکیده
Conventional approaches to content-based image retrieval exploit low-level visual information to represent images and relevance feedback techniques to incorporate human knowledge into the retrieval process, which can only alleviate the semantic gap to some extent. To further boost the performance, a Bayesian framework is proposed in which information independent of the visual content of images is utilized and integrated with the visual information. Two particular instances of the general framework are studied. First, context which is the statistical relation across the images is integrated with visual content such that the framework can extract information from both the images and past retrieval results. Second, characteristic sounds made by different objects are utilized along with their visual appearance. Based on various performance evaluation criteria, the proposed framework is evaluated using two databases for the two examples, respectively. The results demonstrate the advantage of the integration of information from multiple sources.
منابع مشابه
Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملDocument Image Retrieval Based on Keyword Spotting Using Relevance Feedback
Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...
متن کاملA Semantic Image Retrieval Framework Based on Ontology and Naïve Bayesian Inference
To deal with large amounts of multimedia content, the MPEG-7 standard was proposed in order to provide a general standard by which to describe various types of multimedia content. However, we required not only a standard to describe multimedia content but also a retrieval framework to search for the requested semantic content. The proposed framework employs ontology and MPEG-7 descriptors to de...
متن کاملPerformance Evaluation of Medical Image Retrieval Systems Based on a Systematic Review of the Current Literature
Background and Aim: Image, as a kind of information vehicle which can convey a large volume of information, is important especially in medicine field. Existence of different attributes of image features and various search algorithms in medical image retrieval systems and lack of an authority to evaluate the quality of retrieval systems, make a systematic review in medical image retrieval system...
متن کاملBayesian representations and learning mechanisms for content-based image retrieval
We have previously introduced a Bayesian framework for content-based image retrieval (CBIR) that relies on a generative model for feature representation based on embedded mixtures. This is a truly generic image representation that can jointly model color and texture and has been shown to perform well across a broad spectrum of image databases. In this paper, we expand the Bayesian framework alo...
متن کاملA Bayesian Approach to Hybrid Image Retrieval
Content based image retrieval (CBIR) has been well studied in the computer vision and multimedia community. Content free image retrieval (CFIR) methods, and their complementary characteristics to CBIR has not received enough attention in the literature. Performance of CBIR is constrained by the semantic gap between the feature representations and user expectations, while CFIR suffers with spars...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJDLS
دوره 1 شماره
صفحات -
تاریخ انتشار 2010